numpy: most efficient frequency counts for unique values in an array


Question

In numpy / scipy, is there an efficient way to get frequency counts for unique values in an array?

Something along these lines:

x = array( [1,1,1,2,2,2,5,25,1,1] )
y = freq_count( x )
print y

>> [[1, 5], [2,3], [5,1], [25,1]]

( For you, R users out there, I'm basically looking for the table() function )

1
201
8/7/2015 9:51:25 AM

Accepted Answer

Take a look at np.bincount:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html

import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
y = np.bincount(x)
ii = np.nonzero(y)[0]

And then:

zip(ii,y[ii]) 
# [(1, 5), (2, 3), (5, 1), (25, 1)]

or:

np.vstack((ii,y[ii])).T
# array([[ 1,  5],
         [ 2,  3],
         [ 5,  1],
         [25,  1]])

or however you want to combine the counts and the unique values.

131
5/24/2012 4:53:05 PM

As of Numpy 1.9, the easiest and fastest method is to simply use numpy.unique, which now has a return_counts keyword argument:

import numpy as np

x = np.array([1,1,1,2,2,2,5,25,1,1])
unique, counts = np.unique(x, return_counts=True)

print np.asarray((unique, counts)).T

Which gives:

 [[ 1  5]
  [ 2  3]
  [ 5  1]
  [25  1]]

A quick comparison with scipy.stats.itemfreq:

In [4]: x = np.random.random_integers(0,100,1e6)

In [5]: %timeit unique, counts = np.unique(x, return_counts=True)
10 loops, best of 3: 31.5 ms per loop

In [6]: %timeit scipy.stats.itemfreq(x)
10 loops, best of 3: 170 ms per loop

Licensed under: CC-BY-SA with attribution
Not affiliated with: Stack Overflow
Icon