Remove unwanted parts from strings in a column


Question

I am looking for an efficient way to remove unwanted parts from strings in a DataFrame column.

Data looks like:

    time    result
1    09:00   +52A
2    10:00   +62B
3    11:00   +44a
4    12:00   +30b
5    13:00   -110a

I need to trim these data to:

    time    result
1    09:00   52
2    10:00   62
3    11:00   44
4    12:00   30
5    13:00   110

I tried .str.lstrip('+-') and .str.rstrip('aAbBcC'), but got an error:

TypeError: wrapper() takes exactly 1 argument (2 given)

Any pointers would be greatly appreciated!

1
90
1/22/2019 6:39:34 AM

Accepted Answer

data['result'] = data['result'].map(lambda x: x.lstrip('+-').rstrip('aAbBcC'))
128
12/3/2012 11:33:51 AM

i'd use the pandas replace function, very simple and powerful as you can use regex. Below i'm using the regex \D to remove any non-digit characters but obviously you could get quite creative with regex.

data['result'].replace(regex=True,inplace=True,to_replace=r'\D',value=r'')

Licensed under: CC-BY-SA with attribution
Not affiliated with: Stack Overflow
Icon